Sunday 3 November 2013

How to design and build a combat robot : PART 1

Combat robots have been entertaining and amusing since before they were popular on Comedy Central. A while back I undertook the challenge of building a couple of combat robots (a 30lb and a 220lb). Regardless of the size of the machine the steps in the process are the same. This Instructable will walk you through the steps and provide you with resources to help with the machine and give an understanding of what is involved using my 30lb robot as an example.

164-6473_IMG.JPG

Step 1: Decide what size robot you want to build

Combat robots come in many sizes from 75grams to 340lbs each one of them has their pros and cons. The first thing to do when thinking about building is to find the competition which you want to compete and see what weight classes are going to be there, because what is the point of building a bot you can never fight. Listing of robotic competitions are available on 
http://www.buildersdb.com and http://www.robotevents.com.

Large robots: 60lbs + 
There is nothing like the thrill of seeing two large machines hitting each other with the force of a small car wreck. When most people think of combat robots it is these larger machines which first cross your mind. If you are fortunate to live near one of the large robotic events these machines can be fun builds, but at the same time the level of engineering required can be quite difficult. These large machines can also cost quite a bit of money. When you commit to building a machine this size you are committing at least $1000, and in many cases much more. I would estimate that your average heavy weight (220lbs) would cost a builder $4000-$5000 to build a competitive machine, and it is not uncommon to see builders spend upwards of $15,000+ on their machines over the course of a few years. In the days when combat robotics was televised there were many sponsorship opportunities which would subsidize the cost, unfortunately now as a builder you will be on your own. 

On the good side of larger machines is that many times you can find surplus parts online which can reduce the cost of the machine. Using off the shelf components such as items fromhttp://www.teamwhyachi.com/ or http://www.AndyMark.biz can help make things easier. There are more of these components available for larger machines. Those Larger machines also have the added ability for service, fixing a machine is much easier the larger it is. Building a large robot can be both fun and enjoyable and you wont regret being able to say "I have a 120 lb battlebot in my garage"

Small Robot:

Building a small robot can be alot of fun but also a good challenge, with a restricted weight limit it makes every part on the machine to be critically thought about and designed. Most people are drawn to these smaller machines because of the frequency of competitions for them as well as the ability to transport them easily. While it is the common misconception that small robots are cheap they can be just as expensive as their larger counterparts. Alot of times the small electronics required for these can cost quite a bit as compared to larger components. 

weight classes (list from wikipedia): 

  • 75g- Fleaweight
  • 150g- Fairyweight (UK - Antweight)
  • 1 pound (454 g) - Antweight
  • 1 kilogram (2.2 lbs) Kilobot
  • 3 pound (1.36 kg) - Beetleweight
  • 6 pound (2.72 kg) - Mantisweight
  • 12 pound (5.44 kg) - Hobbyweight
  • 15 pound (6.80 kg) - BotsIQ Mini class
  • 30 pound (14 kg) - Featherweight
  • 60 pound (27 kg) - Lightweight
  • 120 pound (54 kg) - Middleweight
  • 220 pound (100 kg) - Heavyweight
  • 340 pound (154 kg) Super Heavyweight

Step 2: Do some research and set a budget.

The first step to building a bot is to think about what kind you would want to build. When I start the project I always take a look at what people have done already and draw from the knowledge learned by others over time.

A good place to start with your research is the builders database. http://www.buildersdb.com this website is used by most competitions for registration. One of the requirements of this site is each team/robot have a profile with a picture of their bots. Because of this you can easily browse hundreds of other robots in your weight class.

Anther good starting point is to determine how much money you are willing to invest. Unless you have lots of parts hanging around which can be re-used from other projects you will need to account for ever item from motors to materials and don't forget about the machining/ building time. Below is a list of the components commonly required for most combat robots.

The main reason that setting a budget is important for your project is that you can very easily spend hundreds if not thousands of dollars very quickly. Robotics is a fun hobby and can fit any budget if you plan for it. The last thing anyone wants is to get part of the way into the build and then not be able to finish due to funds.

Common components:
*Drive motors/ transmissions
*wheels
*chassis materials
*weapon motor
*speed controllers for each motor
*radio control system (receiver and transmitter)
*batteries
*wire
*main power switch
*Bearings
*shafts and axles
*screws and fasteners
*armor material
*weapon (material or purchase)

It is also important not to forget spare parts, as during combat you will break parts and components. Also having at least 2 sets of batteries will be necessary for competition 

Step 3: Initial design


It all starts with a few sketches and a few different concepts. I always do a few concepts and some initial layouts so that I can make a determination as to the best design. Also the more layout is done before the final design the easier to transition to computer design for machining. Use your Imagination and make

It is one of my personal rules that when I start thinking about a design I look for robots that have done similar things and try to see what was successful and what wasn't so I can always improve on the design concept.

I try and keep two things in my mind at all times:
1)Is this robot unique from others? Does it have that wow factor, and will I be happy with it as a personal product as well as how competitive it might be

2) How easy will it be to maintain. Does changing a fried motor require the complete dis-assembly of the robot? Can I change parts out in 10-15 mins if needed?

Those two key concepts help focus your thoughts when thinking about your bot. Also make sure that you check the rules for the competition you are thinking about. Most events use the rules governed by the Robot Fighting League (http://www.botleague.net/ ) , but some organizations such as Battlebots (http://www.battlebots.com ) have some different rules. These rule sets will dictate the types of machines you can build and how to make them safe.

The last part of the initial design is to figure out what parts you have that might work and do a quick layout of your basic overall dimensions, with weight limits for each subsystem. The more planning you do at this stage will help along the way.

Socializer Widget By Blogger Yard
SOCIALIZE IT →
FOLLOW US →
SHARE IT →

0 comments: